A plan to advance AI by exploring the minds of children

 

 

A plan to advance AI by exploring the minds of children
A plan to advance AI by exploring the minds of children

The next big breakthroughs in artificial intelligence may depend on exploring our own minds.

Recommended for You

So says Josh Tenenbaum, who leads the Computational Cognitive Science lab at MIT and is the head of a major new AI project called the MIT Quest for Intelligence.

The project brings computer scientists and engineers together with neuroscientists and cognitive psychologists to explore research that might lead to fundamental progress in artificial intelligence. Tenenbaum outlined the project, and his vision for advancing AI, at EmTech, a conference held at MIT this week by MIT Technology Review.

Some stunning advances have been made in AI in recent years, but these have largely been built upon a handful of key breakthroughs in machine learning, especially large, or deep, neural networks. Deep learning has, for instance, given computers the ability to recognize words in speech and faces in images as accurately as a person can. Deep learning also underpins spectacular progress in game-playing programs, including DeepMind’s AlphaGo, and it has contributed to improvements in self-driving vehicles and robotics.

The Quest for Intelligence, announced in February, also seeks to explore the societal impact of artificial intelligence. This means accounting for the technology’s fundamental limitations or shortcomings, as well as issues such as algorithmic bias and explainability. 

Tenenbaum’s research focuses on exploring cognitive science in order to understand human intelligence. His work has, for example, explored how even small children are able to visualize aspects of the world using a kind of innate 3-D model. This gives humans greater instinctive understanding of the physical world than a computer or robot has.

Tenenbaum has also done groundbreaking work developing computer programs capable of mimicking some of the more elusive aspects of the human mind, often using probabilistic techniques. For instance, in 2015 he and two other researchers created computer programs capable of learning to recognize new handwritten characters, as well as certain objects in images, after seeing just a few examples. This is important because the best machine-learning programs typically require huge quantities of training data. iSee, a self-driving-car company that draws inspiration from this research, was spun out of Tenenbaum’s lab last year.

Tenenbaum notes that the original vision for artificial intelligence, a vision that is now more than 50 years old, sought to draw inspiration from human intelligence, but without much scientific grounding. “The fields of cognitive science and neuroscience are now more mature,” he says. “This should make this project special.”

Gain the insight you need on emerging technologies at EmTech MIT.Register now

This article was written by cool news network.

 

 

Get the latest news delivered to your inbox

Follow us on social media networks

NEXT Inside the world of AI that forges beautiful art and terrifying deepfakes